
Math 2050, quick note of Week 4

1. convergence and ordering

Preserving of ordering under convergence.

Theorem 1.1. Suppose xn and yn are two sequence of real numbers
such that xn ≤ yn for all n. If limn→+∞ xn = x and limn→+∞ yn = y,
then x ≤ y.

A simple consequence is the Squeeze theorem:

Theorem 1.2 (Squeeze theorem). Suppose xn, yn and zn are sequences
of real numbers such that

xn ≤ yn ≤ zn

for all n ∈ N. If limn→+∞ xn = limn→+∞ zn = L, then {yn} is conver-
gent with limn→+∞ yn = L.

The upshot: The ”closed” inequality will be preserved under conver-
gence.
question: What about the opposite? Namely if the limit lies on some
interval, is the tail of the sequence also lies inside it?

Theorem 1.3. Suppose xn is a sequence of real number such that
limn→+∞ xn = x. If x ∈ (a, b) for some a, b, then there is N ∈ N
such that for all n > N , xn ∈ (a, b).

One of the application is the following special case:

Theorem 1.4. Suppose xn is a sequence of positive real number such
that limn→+∞

xn+1

xn
< 1, then xn → 0 as n→ +∞.

2. Criterion of convergence

We would like to determine the convergence of a particular sequence.
By boundedness Theorem, a convergent sequence must be bounded.

Example: xn = (−1)n is clearly bounded but divergent.

Question: What extra structure can guarantee the convergence?
We first consider a special type of sequences.

Definition 2.1. (1) A sequence xn is said to be increasing if xn+1 ≥
xn for all n;

(2) A sequence xn is said to be decreasing if xn+1 ≤ xn for all n;
(3) A sequence xn is said to be monotone if it is either increasing

or decreasing.
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In this case, the boundedness Theorem is also a sufficient condition.

Theorem 2.1 (Monotone convergence theorem). Suppose {xn} is a
sequence of real numbers which is monotone, then {xn} is convergent
if and only if {xn} is bounded.

Consider the sequence xn = (−1)n. Although it is divergent, it is
not far from being convergent. Namely, x2n = 1 and x2n+1 = −1 for
all n which are both convergent.

We need the concept of sub-sequence.

Definition 2.2. Given a sequence of integer n1 < n2 < ... < nk <
..., the sequence {xnk

}∞k=1 is said to be a sub-sequence of the original
sequence {xn}.

Theorem 2.2. Suppose {xn} is a convergent sequence, then any sub-
sequence {xnk

}∞k=1 is convergent with the same limit.

Using the terminology, we can state the definition of divergence by
the following equivalent form.

Theorem 2.3. Given a sequence {xn}, then the following is equivalent:

(1) xn is NOT convergent to x;
(2) ∃ε0 > 0, and a subsequence {xnk

} such that for all k,

|xnk
− x| ≥ ε0

Moreover, the boundedness is almost equivalent to convergence in
the following sense.

Theorem 2.4 (Bolzano-Weierstrass Theorem). Suppose {xn} is a bounded
sequence, then there is a convergent subsequence.

We will give an alternative proof which is different from that in
textbook.

Proof. By boundedness, there is a, b such that for all n,

a ≤ xn ≤ b.

For k = 0, we denote I0 = [a, b], a0 = a and b0 = b. Suppose

[a,
a0 + b0

2
] contains infinity many xk, then we choose a1 = a0, b1 =

a0+b0
2

otherwise we choose a1 = a0+b0
2

and b1 = b0. Then we define
I1 = [a1, b1] and pick xn1 ∈ I1. This is possible since I1 contains
infinity many elements.
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We repeat the same step to obtain a sequence of Ik so that Ik is a
sequence of closed, bounded and nested sequence. Moreover, there is
xnk
∈ Ik and

|Ik| =
b− a

2k
.

By nested interval theorem, we have η ∈ ∩∞k=1Ik. Therefore,

|η − xnk
| ≤ |Ik| =

b− a
2k

which implies xnk
→ η as k → +∞. �


